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ABSTRACT 

It is well known that if aj a  are positive 

n r  i/r 
numbers, then the mean  (£a./n)    is increasing in r. 

In this paper we obtain conditions for monotonicity of the 

r  r 1/r 
ratio (Za,/Eb.)    of means. 

Monotonicity of a ratio can be viewed as a form of total 

positivity.  The theory of total positivity is exploited to 

obtain more general results. 

The proof of monotonicity is based on a theorem giving 

sufficient conditions for majorization.  Several other appli- 

cations of the majorization theorem are given.  One applica- 

tion concerns a stochastic comparison between a function of 

order statistics from a distribution with increasing failure 

rate average and the same function of the order statistics 

from the exponential distribution. Another application is 

to a comparison between the condition number of a positive 

definite matrix and the condition number of a polynomial in 

the matrix. 
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1.    Introduction. 

It is well known that if    a.,   ...,  a      are positive 

numbers,  then the mean    l2La</n is increasing in    r.    In this i?a>: 
paper, we first obtain conditions for monotonicity of the ratio 

n n 

111 

1/r 
of means  (and for its continuous version).    The 

conditions for monotonicity permit    b    =   ...  = b    = 1,  so that 

Zb    = n,  and thus the classical result becomes  a special case. 

Since monotonicity of a ratio can be viewed as a form of 

total positivity,  the theory of total positivity is exploited 

(Section 3) to obtain more general versions of the result above. 

The proof of monotonicity is based on a theorem which gives 

sufficient conditions for majorization.    Because majorization leads 

to many different forms of inequalities  (see Hardy,   Littlewood, 

and Prflya (1952),  and Beckenbach and Bellman (1961)),  it is not 

surprising that a diversity of applications of the majorization 

result are obtained. 

One application concerns a stochastic comparison between a 

function of order statistics from a distribution with increasing failure rate 

average and the same function of the order statistics from the exponential 



■ 

distribution. The use of these stochastic comparisons in testing certain 

statistical hypotheses is pointed out (Section 5)« 

Marshall and Olkin (1965) compare the condition number of a matrix 

« 
A with the condition number of its symmetrized version AA . The 

majorization result is applied (Section 6) to obtain a comparison between 

the condition number of a positive definite matrix and the condition 

number of a polynomial in the matrix. 

In the final application, several inequalities concerning absolute 

deviations are obtained (Section 7) which generalize known results. 

Remark. To avoid awkward notation we often omit subscripts in sums 

n 
and or in vectors, e.g., Lx log x s 2 x.log x., 

1 i    i 

lSarl 

2. Majorization. 

To determine conditions on (a.,...,a ) and (b,,...,b ) such that v  1'       ' n' N 1'       ' n' 

g(r) £ (Za /Lb ) '      is nondecreasing in   r, one might set    d log g(r)/dr > 0, 

or equivalently, 

r \               / JM        —^ /, r \ / , r \l b   1 ,            D «•"   m «(a '-m - Zbri 

Inequalities of this type can be obtained under appropriate condi- 

tions using majorization. 
k k 

Definition 2.1.    If   a   > ... > a , b   > ... > b , ^ a   > 7 b 
1        n-nni -nj^j^J 

for    k = 1, 2,   ..., n - 1, and   ^ a. =   ]£ b , then    a = (a^.-^a )    is 
T  J   1 J in 

said to majorize b = (b., ...,b ), written a ^b. 

Remark. An alternate definition of majorization is sometimes used: 



A jet    {a)    is  said to majorize a set    {b)    if,   possibly after ordering 

of the elemer.ts of each set,  the conditions of Definition 2.1 are 

satisfied (Hardy,  Littlewood,   and Pdlya (1952), page   +5). 

Definition 2.2.    A real function   cp    of    n    real variables is  said 

to be a Schur function if for every pair    i / j,   (x -x ) (r^-- ~^~J ^ 0* 

These concepts are  linked in the basic theorem: 

Theorem 2.3»     (Schur  (1923),  Ostrowski  (1952)).  Let    ^(x)   be defined 

for    x    > ... > x.    rp(8)  > rp(b)    for all  a^b    if and onl^r if q) is a Schur function, 

Remark.    If the  alternate definition of majorization is used  (see 

the rewark after Definition 2.1), then the requirement that    cp    be 

symmetric must be imposed. 

Nov    Zx log x    is  a Schur function since all functions of the form 
»• 

2 g(x ), g convex, are Schur functions. Thus to prove (2.1) it is 

sufficient that fa/Za) >- (ß/Zß), where a = aj and ß. = b**, i = I, ...,n. 

Theorem 2.k.    If a. > 0, ..., a > 0,  ß, > ... > ß > 0, and 
       1 n   '  1 -   - n   ' 

-i < ... - lü , then  (g-) > (4) • 
a, -   - a '     vZa'' ^ ^Zß' 
1        n 

Proof.  Hate that the hypotheses imply a > ... > a > 0. Thus, 

we must prove that for k - 1, ..., n - 1, 

k n k n 

i J l *     i j i * 

This follows from 

k        n kn kn kn 

l^l^ - T.^1^ - E«, Z ^ - Z^j Z «£ 1    J 1    ^ 1    J  1    *        1    J k+l    *        1    J k+1    ^ 

k        n Ai.      p. 

j=i .ir+i 
J £lai   V " 
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Using Theorems 2.5 and 2.k  with (2.1), we have thus derived (for r > 0): 

Theorem 2.^. If a1 > 0, ..., an > 0, t^ > ... > bn > 0, . 

b i i / 
— ^ ... v — , then (Lar/ZhT)  /r    is increasing in r. 
a, —    — a 
1 n 

A more direct, though possibly less clearly motivated, proof of 

Theorem 2.5 is based on an application of Theorem 2.3 to the Schur 

"*■ r 
function ^(x., ...,x ) = Zx0, t > 1. Again for r > 0, let a.  = ai 

and ßi = b^j for r < 0, let ^ = an.i+1^ ^ = bn-i+l, Then by 

Theorems 2.3 and 2.4, L(ar/Lar)t > L{hr/Lhr)   . The conclusion for 

r > 0 (r < 0) is a consequence of choosing t = s/r, s > r (s < r). 

Finally, monotonicity in r follows from the continuity of (Za /Zb ) ' 

at r = 0. 

An important example in which the conditions of Theorem 2.k  are 

satisfied is obtained by choosing a = tyißj)i  where \|f is a non-negative 

starshaped function.  (A real function \|r defined on [0,») is said to be 

starshaped if \jr(x)/x is increasing in x. An interesting example of 

starshapedness is ^ convex on [0,»), \|r(o) < 0. Note that a non-negative 

starshaped function ^ must be increasing and must satisfy \jf(o) = 0. 

Such functions are discussed by Bruckner and Ostrow (1962).) With this 

choice, assuming ßi > • • • > ß > 0, it follows that a > ... > a > 0, 

so that by Theorem 2.4, 

^^ (zß) ^ zKß7 = {W   ' 
'•).    An Extension Using Total Positivity. 

Theorems 2.h  and 2.5 can be viewed as theorems on total positivity 

a:.d car. le proved by the methods of total positivity. A matrix (t. .) 

of .-.on-negative numbers is said to be totally positive of order 2 

(TP0)  if all its 2x2 minors are non-negative. Similarly, a non-negative 



'   !    I    '      ■ 

function    t(x,y)    of real variableG    x    belonging to 36   and    y    belonging 

to ^    iv said to be totally positive of order 2 if,  for all    x.  < x^ 

in ;£    and    y    •   y^    in V    ,  the determinant 

(tU^y^       tCx^ygA 
>   o . 

t(x2,y1)        t(x2,y2)/ 

Suppose the t.  are non-negative; then (t, ) is clearly TP2 if 

and only if t   J^A A    ^
S
  increasing in J for each i. 

Let t  - a > 0, t  = ß. > 0, J = 1, 2, ..., n; then ß,/^ 

increasing in i is equivalent to ("t^ J being TP«. Since it is 
i4   k      . I k       . I 

easily concluded from Theorem 2.h that     Z a./ Z cr > Z ß./ Z ß,    for 
lilJ~lilJ 

all    k<&,  Theorem 2.k essentially states that if    (t    )     is    TPp 

ar'd Tik=- £_ \y then ^i^  ls TP2- Write Tik = j^Vjk' vhere 

H,,  is 1 for J < k and is 0 for J > k. Since (H,, ) is TP0, 

Theorem 2,h  follows from a standard theorm of total positivity which 

asserts that 

p(x,z) = /(p1(x,y) <P2(y;Z) dn(y) 

is TP- provided ^^^(x^) and (p2(y,z) are each T?^. 

Because monotonicity of ratios can be interpreted as total 

positivity of order 2, Theorem 2.5 also is a statement of total 

positivity. This suggests the following generalization: 

Theorem 3 »!• Let g(x,y) be TP_ and decreasing in y for each 

x. Then 

h(x,s) H {;gl/3(x,y) da(y))S 

is TP2. 



Proof.    Define 

u(x,s) = log h(x,s)  = s log    / gS(x,y)  dn(y)   , 

then 

- s g    du dx äs 

r s      r s ■L 

g du  /  g      g^log g du 
i-1 i s r s 

g      gxdu     g log g d[x 

Jet 

r
g

7d. ''-1 d ß        gxdu 

i-i 
(   e"log g du g"    ßx

log 6 dfij 
/ 

i-1 
s 

\ 

'   r 

y^y2 

det 

g (x^j^)      g      (x^yj^) gx(x,y1) 

iES(x,y2)      g
S    (x,y2)  gx(x.y2) I 

det 

log g(x,y1) 

1      log g(x,y2)j 

du(y1)  du(y2) 

from Problem 68, Po'lya and SzegS (1925)»    The first determinant of the 

integrand  ic  non-negative since    g(x,y)    is    TPp.    The second determinant 

is  :.on-positive  since    g(x,y)     is decreasing in    y    for each    x.    The 

rojult follows  from the fact that   a non-negative function    h(x,s)    is 
p 

TP2    if and only if   d log h(x,s)/dx äs > 0. || 

To obtain Theorem 2.5 from Theorem 3.1,   let    y    range over the 

values     1,  2,   ..., n    and choose    g(l,i)  = a  ,  g(2,i)   = b   ,  and u(i)   = l/n. 

W-.  car. extend Theorem 2.5 slightly be choosing    u(i)   = PJ   > 0, Zp    = 1. 



t * 

Under the hypothesis of Theorem 2-5 we conclude that (Zpa /Zpb ) '  is 

increasing in r .    A further extension is obtained in the next 

section. 

h.    Monotonicity of Ratios of Means. 

With Thoorem 2.5 in mind,  consider right continuous  distributions 

G    and    F    of non-negative random variables approximated by step functions 

with jumps    l/n    at    a      and    b      respectively,  a    >  ...  > a    > 0, 

b    >...>b    > 0.    Then   G(a.) « i/n a» F(b4)    (where    F^l-F,  G=l-G), 

and the condition    b /a.    increasing in    i    becomes    F   \±/n)/ G     (i/n) 

increasing in    i.     In the limit, we obtain the condition    F    (p)/G  ^p) 

increasing in    p. 

To avoid the necessity of assuming that the distribution functions 

are strictly increasing,  define 

H '^p)   = inf{x > 0:  H(x) < p),     H"1(p)   = inf{x > 0:   H(x)  > p}  , 

where H is a distribution function. 

Theorem ^-.1. If F and G are distribution functions, 

F(0) = 0 = G(0) , and F- (p)/G"lp) is increasing in p, then 

r/xrdG(x) L/r 
    I 

\fxrdF(x)' 

is increasing in r. 

Proof.  Using the approximations above, a limiting argument may be 

used to obtain the result from Theorem 2.^.    Alternately, it may be 

obtained as a special case of Theorem 3*1 by choosing g(l,y) = G" (y), 

g(2,y) = F' (y)  and taking ^ to be uniform on [0,1].    li 
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I Whe;.    F(0  )  = 0 = G(0  ),  F    and    G    are  continuous and have 

continuous inverses,  the hypothesis of Theorem ^.1 has the folloving 

equivalent formulations: 

(i)    F":i{p)/G~1(p)  = F"1(l-p)/G":L(l-p)    is  increasing in    p, 

0 < p < 1, 

(ii)    G"     F(X)/X = G- F(X)/X    is  increasing in    x    in the  support 

of    F, 

(iii)    F(x)  = G(t(x))     for some no. -negative  starshaped function    \|/, 

(iv)    If    X    is a random variable with distribution    F,  then    ^(X) 

has  distribution    G    for some non-negative starshaped    ijf. 

We say that    F    is starshaped with respect to    G if (i),   (iii)  or 

(iv)  holds, because  (i),   (iii)  and (iv)  are equivalent even without the 

continuity, restrictions on    F    and    G.    Since the equivalence of (iii) 

and  (iv) is easily verified, we need show only that (i)  and (iii)  are 

equivalent.    Let J „    be the set of all    x    such that    x = inf {z :  H(z)  < p) 
r — 

for some p€(0,, 1). 

Theorer. ^-.2. If F and G are right continuous distribution 

functions such that F(0 ) ^ G(0 ) = 0, then F(x) = G(cp(x)) for some 

strictly increasing function fp such that cp(x)/x is increasing for all 

x e^„ if and only if F  (p)/G  (p) is increasing in p, 0 < p < 1. 
r 

Proof.      Suppose    F(x)   = G(fp(x))    for some  non-negative strictly 

incr-a^'inf    rp    juch that    rp(x)/x    is  increasing  in    x €_J  .    Then 
r 

F "I(p)   _ infix:   F(x)  S p)   ^ infix:   F(x)   1 p) = infly:  F(y)  < pj  

G"1^))      infix:   G(x) ^ p)      inf lx:F(cp"1(x)) __ p)      infl(p(y):   F(y) < p) 
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are developed in Section 5- 

Choose    F(x)   = Q'
X

    and    G    a DFRA distribution for vhich 

/:•: dG(x)  = rr, r>0.     (A proof that such a distribution exists has been 

oi taiued by Herman Rubin and is  presented  in the appendix.)    From 

r l/r T;.eoren h.l it follows that    [r /r{r+l)]  '       is an increasing function 

of r>0, a result obtained by Mine and Sathre  (1964). 

III.     Let    F(x)   = G(xt),  t > 1.    Then    G"1(p)  =    [F-   (p)]       so 

that    F'1(p)/G"    (p)   =   [F"  (p)]  "      is  increasing in    p.    Thus,  the 

conditions of Theorem U.l are satisfied,   and so 

/xrdG(x) 

/xrdF(x) 

nl/r 
/xrtdF(x) 

/xr dF(x) 

iVr 

is increasing in r.  More generally, if X has distribution F and 

Y = ^(X) has distribution G where ^ > 0 is starshaped,. then 

{/[t(x)]r dF(x)//xrdF(x))l/r 

is increasing in r. 

5.  Statistical Applications. 

In the present section we make some comparisons involving the order 

statistics from distributions F and G, where F is starshaped with 

respect to G. 

Let    X,  >  ...  > X      be order statistics  from   F.    Then from (2.2) 1 — —    n v 

we  have for any starshaped    ijf > 0    that 

^1      XA< w   > • • ' >   vv/      N EtTxT '•••' z^xTl   * zx '"-' zxj 

Cor.sequently, if F is starshaped with respect to the distribution 

G, and X, > ... > X  are order statistics from F, Y. > ... > Y  are 
1 -    - n 1 —    — n 
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order Jtatictics from G, then 

ix,             X 1 st /Y, Y   1 L                 n _y 1 n 
"\ IZX '■•''  LX 'ZY' •••' ZY/ ^ (-.1) 

k n k n 
i.e.,    2   X. / V X.     is  Etochastically less than or  3qual to   ^Y./ /   Y. 

11 11 

for    k =  1,   ...,  n.     (A random variable    U    is  stochastically greater 
st 

than or equal to a random variable    V,  denoted by    U >  V ,  if 

P[U > a]  > P[V > a]    for all    a.) 

With  i'j-l), Theorem 2.3 yields some interesting applications.     For 

-1 2 example, choosing the Schur function cp(z ,...,z ) = n Zz - 1, we obtain 

^     st 
(>2) Z(X.-X)2/X2 < Z(Yi-Y)

2/Y2  . 

Choosing the Schur function    fp(z,,...,z  )   = nZaz/Zz,   a,  >  ...  > a  , In ' 1 — —    n 

z,  >  ...  > z , ve obtain 
1 - —    n 

st 
(>o) Za.X./X     <   Za,Y./Y    , v       ' i i' —       i r 

where    X = ZX/n, Y = ZY/n. 

An important special case where    F    is starshaped with respect to 

G    (introduced in Section h)  is obtained by choosing    G(x)  = e        and 

F    IFRA.    We discuss the  statistical applications of  (5«2) and (5*3)  in 

this  case,   although the results  hold more generally. 

I.     Consider first the problem of testing the hypothesis that    F    is 

exponential versus the alternative that    F    is  IFRA.    Because of the 

stochastic ordering given by  ('3.2),  a test based on the statistic 

— 2   — 2 
R(X)   = Z(X.-X) /X       is unbiased.     (By using different Schur functions, 

alternative jtatistics  could be  used,  yielding unbiased tests.)    To 
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carry out the test at the level of significance a,   determine k , such 

tiiat P[R(X) < k ) =a when F is exponential, and reject the hypothesis 

of exponent!ality when R(X) < k . 

For a test of the hypothesis that F is exponential versus the 

alternative that F has increasing failure rate, i.e., log F(x) is 

concave where finite, see Proschan and Pyke (1965)' 

II.  Next, we discuss testing for outliers when the distribution F 

is known to be IFRA. Suppose that X, > ... > X  are order statistics 
1 -   - n 

fron F unless possibly that X..  is an "outlier," i.e., X.. does not 

arise as an observation from F, but from F < F, F.. ^ F. 

A natural test of the hypothesis that X > ... > X  all come 
1 —   — n 

from F is to reject the nypothesis if X./X is too large. If F 

is unknown, the distribution of this statistic is unavailable, but since 

F is IFRA, it follows from (5o) with a = 1, a = ... = a =0 that 
st   _ 

X-/ X < y,/Y, where Y. > ... > Y  are the order statistics from an 
r   —  1' 1 —    — n 

exponential distribution. To control the type I error, note that 

PlXj/X > ka) < PiYj/Y > ka) = a. 

Although the type II error cannot be determined without knowing 

F1, we can assert that the type II error is smaller under Fp than 

under F.  whenever Fp is starshaped with respect to F1 . 

Similarly, a test can be obtained when X  is suspected of being 

a:, outlier; here the test statistic is X / X, and we use (5'3) with 

a, - ... - a  , = 0, a = - 1 to control the type I error as above. 
1        n-1     n 

More generally, a test against the possibility that X., ..., X  and 

X , ..., X  are all outliers makes use of (5'3) with a, = ... = a = 1, 
s      r. 1        r 

ü    ,--...  a . = 0, a = ... = a = - 1. The test statistic is 
r+1        s-1     s        n 
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(x   + ... » x   - x. -  ... - ;•; )/x . 
.: :. 1 r  ■ 

o.     Condition numbers . 

A coramonly used measure of the  difficulty of numerically inverting 

a  non-singular matrix    A    ij its  condition number    c  (A)  = 'p(A)  cp(A     ), 

where ordinarily    rp    is   a norm (i.e.,  ^(A)  > 0    when    A ^ 0, 

fp(7A)   =  I7I   fp(A)     for  complex    7,  'p(A+B)  < 9(A)   +9(B)).    Marshall and 

Olkin (l9o5)  show that 

(o.l) c  (A)    <    c  (AA*) 

when    9    is  a unitarily invariant norm  (i.e.,     cp(A)  = ^(UA)   = (p(AU)     for 

all unitary matrices    U) .    The proof is based  in part on a result of 

von Neumann  (1937)  that    cp    is a unitarily invariant norm if and only if 

there exists a symmetric gauge function    $    such that    fp(A)  = <l)(a)     for 

2 2 *       / 
all    A, where    a,,   ...,  a     are the  characteristic roots of    AA  .     (A 

' 1' n 

function    «t on a complex vector space is called a symmetric gauge  function 

(SGF)  if    (t(u)  > 0    when    u / 0,  $(7u)   =  I7!   q)(u)    for complex    7, 

<l>(u+v) < *(u)  + Ci(v),   and    $(u , ...,u  )  = ^(e-u    ,■•.,£ u    )    whenever 
n 1 n    n 

e.   = + 1    and  (i,,   ...,   i)   is a permutation of    (l, ...,n).)    Using this, 

a more general result than (6.1)  is  also obtained by Marshall and Olkin 

(1905),  namely,   that if    4»    is a SGF and    O,   > 0,  then 

(o.2)        <l)(a , ...,a )  ^(a-   ,...,0;    )      is increasing in    r > 0  . 

The  proof of  (^.2)  rests  on the following 

Lemma o.l.     If    u-^v,  ♦    is  a SGF,  and    g    is a non-negative  convex 

function,  the:: 

(-O) *(6(u))    <    ^(g(v))   . 
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For a:.y matrix A ar.d ai.y unitariLy invariant norm, 

c (A) = c ((AA*)2). With B = (AA*)1 and ^(B) = ZC BJ, it follows 

from (j.y) that 

(o.o) ^(A) < ^(^(AA*)^)) . 

This reduces  to   (o.l)  when    t(B)  = B   . 

/'.    Inequalities  for Absolute Deviations . 
n 

If    c  ,   ...,   c      are real numbers satisfying   2* ^   = ^^  then 

(7-1) ^|clG < (iz|c|)G   , s  > 1  . 

This inequality was proved by Gatti (195^) for s = 2, and in its present 

form by Birnbaum (1958)' Generalizations of (T'l) can be obtained 

using Theorems 2.3 and 2.h. 
n 

Lemma T'l« If c,t .... c  satisfy 5c. =0, u. = Ic. I , and 

u,  >  ...  > u  ,  then 1 - -    n7 

(7.2) 
u u  I 

'I r^ n 
1 "^      '      ~ that Proof.    From    c   =-^ c      we have u1   =  1^ c. |   "^^u.,   so 

n                                  2a i22 n 
2u    ^2Ju ,  and  consequently   u /^ u < ^      Of course,   (u,+u  )/2^u    < 1. 

From (2.2),   it follows that for 0 < r < 1, 

(r r \ , 
ul u    I /ul u 

^u Zu / ' 

Since T)(x , ...,x ) = Zx,t > 1, is a Schur function, we have from 

Theorem 2.3 and (7.2), 
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The  choice    t = s/r,   c; > r,  yields 

(T.-O (iZur)1/r    >    {\Lxx3)l/S, 0_r1l,  r<s     . 

The result  (T-l)   corresponds tc the  case    r = I.    The restriction 

0 < r < 1    cannot be relaxed to    0 < r,   as may be seen from the  choice 

c.   =  1,  c= .. .= c =     and    r > 1. 
1 2 n        n-1 

Remark.    If in  Lemma   (.1 we define    u    = h(|c  |)    where    h    is 

non-negative and  subadditive,  i.e.,  h(x+y)  < h(x)  + h(y),  then (7.2) 

remains valid.    The  function    h(x)  = x ,  0 < r < 1,  leads to  (7'M'     If 

h(x)    is non-negative and  concave for    x > 0, with    h(o)  = 0,  then    h(x) 

is  subadditive  in    x > 0. 

As a consequence  of  (T'l)^  De Uovellis   (1950)  proves that 

{(.j) Zu"+      <   ^ 2u Zub for    s > 0  . 

Using the generalized version {l.h) of  (7.1)^  a generalized version of 

(7.5)  can be obtained,   namely, 
*** 

(7.o) Zur+Ü    ■_   i Zur lu3  , 0 < r < 1 . 

From (7'2)  and  (7o);  we see that   f > u./Zu ,   so that 

„ r+s/„ s          „ r/u    I      .      r     ,    1„ r 
^u      /t.u      =    Zu    1     <    ui    £    1*^    > 

\ZuG/ 1 

which yields  (1.6). 

The role of    \    in  (7.2)  stems  from the fact that    c.,   ...,   c      can 

be divided  into two  sets with equal sums  (except for sign).    Suppose we 

have three setJ of positive numbers     {xj,   {y},   {zj    such that 
!'l r"2 n2 / 
T x.   --- y.  =  ^   z, •     Le*    u.  > ...  > u      n = n,  + n„ + ru    be the 
L   1     L     i     L   k 1"       ~nl 1     2      5' 
1 1 1 
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ordered    x's,  y's,   and z's.    Then 

lu u   \ /111 

IST ,•••, sr) "^ \j' j' j' 0>'">0] • 

By using argunents analogous to those for the case of two sets, we 

obtain 

1 v r 
1/r 

> 
1 V s — Zu 
3 

:VS 0 < r < 1, r 

which parallels  (7.^)..   The extension to the case of an arbitrary runber 

of sets is  inmediate. 

APPENDIX 

Theorem» There exists a decreasing failure rate (DFR) distribution 

r 
vith moments n - r ; r > 0. 

Proof.  (H. Rubin). Consider 

rr =   /      xrf(x)dx =   /      e'^ f(o"y) e"ydy 

.: r p-yr 
e ^    g(y)dy  . 

Fron the  inversion formula, Widder  (19^1)  P« 2^-1, 

6^y^ = 2*1      rr eyrdr = 2ld" /    exp^r l06 r + yr^dr • 

ie 
Transform from r to Ö by r = p(y,t3) e   choosing p in such a 

manner that r log r + y  is real. Since 

r log r + yr = p[cos -'(log p+y) - 0 zin d]  + lp[sin t*(log p+y) + ö cos 0] 

H a + bi , 

we cr.oose b =0, i.e., 
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(A. 1) log p = - 0 cot 9 - y . 

Then 

r log r + yr = p[cos ö(-0 cot 9) - 9 cos 9) = - p9 esc 9 

-y/ 3    n    -''  cot 9\ = - e (9 esc 9 e      ) 

= - e"y A(9) . 

To determine dr/d9, note that from (A-1) "" "HA = ö csc ^ " co^ ö» so 

that 

d9 = P do (C0S e+i Sin 0) + e  d9 

= p csc 9[9 cot 9 - 1] + ip9 csc 0 = c + di . 

Hence 

g(y) = —;  exPt- e"yA(0)] (c+di) d0 = L + Mi . 
«j 

But g(y) is real, so that the right-hand side must be real. This 

implies that the complex term vanishes, and that 

g(y) =^ /   exp[- e"yA(0)] e"yA(0)d0 
^ -it 

=- /   exp[- e'yA(0)] e"yA(0)d0 . 
-0 

~y Let x = e  , then 

f(x) = 6<- ^ x) = ^  r"  emxA{e)HeUe   , 
x - 0 

vhich  is  a mixture of exponential distributions,   and is automatically 

DFR. 
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